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Abstract

Earth observation data has greatly enriched social science research, especially in con-
texts where data is otherwise scarce or likely to suffer from measurement error. How-
ever, social scientists may not have a good enough understanding of remote sensing
techniques to avoid unforeseen side effects when using this type of data in novel ways.
Economists, for example, often combine gridded land cover data with survey data
by reducing the former to a locally centred summary statistic at the interview loca-
tions provided by the latter. The decisions taken in this reduction process can af-
fect the resulting exposure metric and subsequent statistical inference. Using inter-
view locations in eleven African countries from a large international survey, we calcu-
late respondents’ exposure to deforestation in 90 slightly different ways. To illustrate
how this can affect inference, we model respondents’ subjective well-being scores on
the different versions of their exposure to deforestation in a multi-level, linear mixed
model. We variably find significant negative and insignificant effects. Social scientists
should be exceedingly careful when using land cover data.
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I. Introduction

Earth observation (EO) data has become an important tool across awide range of scientific
disciplines over the past two decades. In applied economics research, EO has found ample
use to fill in gaps in traditional survey data for areas of the world where ground data is
scarce (Overman, 2018). In development economics, data on night time lights and land
cover (changes) have been used as proxies for economic activity (Chen et al. 2021; Gibson,
Olivia, and Boe-Gibson 2020; Henderson, Storeygard, and Weil 2012; Keola, Andersson,
andO.Hall 2015; Sutton andCostanza 2002). In environmental economics, the availability
of gridded weather data has enabled a growing body of research dedicated to estimating
the past and potential impacts of climate change on socioeconomic outcomes (see, e.g.,
Baylis 2020; Burke, González, et al. 2018; Burke and Tanutama 2019; Carleton and Hsiang
2016; Deryugina andHsiang 2017). The new spatial dimension of data has also resulted in
new econometric methods for (causal) inference (e.g., Butts 2023b; Butts 2023a; Delgado
and Florax 2015; Deryugina and Hsiang 2017), as well as new use cases for existing ones
(Druckenmiller and Hsiang 2019; Wuepper and Finger 2023).

Typically, EO data is transformed from its original form (spectral bands, e.g. infrared)
into data products like categorical land use and land cover (LULC)maps¹ to analyse the so-
cial and economic effects of land cover characteristics and changes therein (García-Álvarez
et al. 2022). Typical applications include modelling agricultural crop yields (D’Agostino
and Schlenker 2016; Leng and J. W. Hall 2020; Schlenker and Lobell 2010; Schlenker and
Roberts 2009), exposure to flood (Becher et al. 2024; Fox et al. 2024; Pople et al. 2024),
drought (Anderson et al. 2021; Staal et al. 2020; Tabari and Willems 2023), or wildfires
(Baylis and Boomhower 2023; Burke, Heft-Neal, et al. 2022; Wen et al. 2023), and monitor-
ing the health of natural ecosystems more generally.

Deforestation is another classic application for land cover monitoring. As Figure 1
shows, the use of spatial data to study deforestation has grown exponentially since the
early 2000s. Data on forest cover change is typically computed using a timeseries (or
“raster stack”) of forest-non-forest (FNF) maps. Changes at the pixel-level are computed
by differencing individual maps or, more often, composites of appropriately lagged be-
fore and after periods. Due to the binary nature of the FNF maps, pixels on the resulting
difference maps can only take one of three values: -1 (deforestation), 0 (no change), or 1
(reforestation or afforestation). However, the binary FNF maps underlying these simple
computations are typically produced using rather complex machine learning algorithms
that attach tree cover probability values to pixels, based on their reflective characteristics
in a spectral analysis of raw satellite imagery (Fuentes et al. 2024; Ye, Zhu, and Suh 2024).
The assignment of 0 or 1 to a pixel is then determined by whether the modelled probabil-
ity value falls below or above a threshold which effectively defines what constitutes tree
cover. These thresholds are often subject to offsets to avoid classification mistakes close to
the boundary. Typically, they are neighbourhood specific too, since reflective character-
istics vary across different forest ecosystems (Lin et al. 2024; Reiche et al. 2018). Figure 2
schematically depicts how land cover maps are created from surface reflectance images.

¹For the similarities, differences and connections between the land use and land cover concepts see
(Comber 2008).
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Figure 1: Number of publications whose title, abstract, or key words jointly include one or more
of ”deforestation”, ”forest loss”, and one or more of ”GIS”, ”spatial data”, ”earth observation”, or
”remote sense” (data source: SCOPUS).

Practitioners from fields that have only recently adopted GIS as part of their toolkit
may not be aware of these technical details, or able to weigh their effect on the outcomes
of interest (Jain 2020; Josephson et al. 2024). When processed gridded categorical data
are used to supplement a more traditional, tabular data source with additional covariates,
the subtleties underlying the spatial data component are rarely discussed (Foody 2015).
Since this is a rather typical use case in economics and other social science disciplines, it
poses the following question: How robust are estimates of socioeconomic relationships
involving such covariates to changes in the key parameters used to construct them? Put
differently, does the categorisation process that underlies land cover maps affect statis-
tical inference of social phenomena? And how important are researchers’ choices when
aggregating (reducing) gridded data to points, relative to these differences?

To answer these questions, we emulate a typical research scenario from environmental
economics. We combine survey data with a gridded land cover data product to model the
effects of deforestation on survey respondents’ subjective well-being across eleven East
African countries.² In addition to a categorical landcover map (Figure 2c) we also have
access to the pixel-level model probabilities (Figure 2b) underlying it – both at 10 by 10
meter resolution.

²They are listed in Table A2 in the appendix.
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Figure 2: From raw satellite imagery to categorical landcover maps. Surface reflectance (a) enters
a statistical model that computes the probability of each pixel belonging to a landcover type (b).
By some threshold or benchmark, high (low) probabilities are coded 1 (0) yielding a categorical
landcover map (c). In this example the resulting map is a binary FNF map (1 = tree cover, 0 = not).

To induce variability, we categorise the probability band into different FNFmaps using
a locally centred probability threshold with varying offset values. Additionally, we vary
the length of the before and after periods aswell as the radius of the circular buffers around
the survey locations, which we use to extract point values from the grid. Varying these
parameters one at a time, we obtain 90 combinations to calculate different versions of our
deforestation metric. We then relate respondents’ subjective well-being scores to these
exposure metrics in a multi-level linear mixed model to test how the metric variability we
induced affects statistical inference in terms of coefficient size and statistical significance.

The rest of the paper is structured as follows. Section II outlines the conceptual frame-
work behind our analysis, introduces and summarises our data sources, describes the de-
forestation exposure metric’s construction, and discusses the econometric strategy used
to estimate deforestation impacts on subjective well-being. Results of this exercise and
robustness checks are provided in Section III. Section IV discusses our findings and con-
cludes.

II. Data and methods

A. Conceptual framework

Tree-based ecosystems provide services that are essential to the social and economic sys-
temswe live in and rely on – see TableA1 in the appendix. Deforestation, in turn, interferes
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Figure 3: Simplified directed acyclic graph. Subjective well-being captures the local aggregate ef-
fects of complex human nature interactions affected by deforestation. Everything inside the dashed
border is unobserved and only modelled implicitly.

with their provision and heightens risk exposure onmultiple domains (Lapola et al. 2023).
Outcomes that are sensitive to deforestation may also be linked to one another and nested
in a complex system that spans local, regional and global human-nature interactions. Be-
cause of the non-linearities involved, statistical inference on one specific impact domain is
inherently difficult.

An alternative to estimating each of the potential effects of deforestation separately is to
measure an outcome that can, at least in part, proxy for the aggregate effect of deforestation
on people’s well-being. The life satisfaction approach to environmental valuation uses
subjective well-being scores for this purpose (Ferreira and Moro 2010; Frey, Luechinger,
and Stutzer 2010; Maddison, Rehdanz, andWelsch 2020; OECD 2018; Welsch and Kühling
2009). The reasoning behind this method is summarised in the directed acyclic graph
(DAG) in Figure 3.

The complex human-nature interactions affected by deforestation are only considered
implicitly through their effect on subjective well-being (SWB). A regression of SWB on de-
forestation can identify their local net effect, conditional on appropriate control variables
to avoid confounding and a range of fixed and random effects to account for unobserved
heterogeneity across space and time.

B. Data sources

The Gallup World Poll (GWP) is an international household survey that provides yearly
repeated cross-sections of residents in more than 140 countries since 2005 (Gallup, 2021).
It is composed of randomly selected, nationally representative samples of approximately
1000 individuals per country per year. We use the years 2016-2019 for which precise lo-
cation data is available at the primary sampling unit (PSU) level; this is approximately
equivalent to the village level.

Location data are often distorted to preserve privacy, which can lead to measurement
error at a highly localised scale (Michler et al. 2022). GWP, however, reports undistorted
central points within interview clusters rather than individual locations, thus relieving
this concern. Measurement concerns based on systematic differences in the distance be-
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tween true location and the reported PSU-centroid (Carter and Munos 2021) do not arise
at the spatial scale of interest (>5km).

We construct our deforestation exposure metrics from Google’s Dynamic World (DW)
dataset (Brown et al., 2022). DW is a near real-time global LULC mapping product that
includes nine distinct land cover classes at daily frequency from 2015. At 10m resolution,
DW capturesmore localised variation in forest cover than other open access maps (García-
Álvarez et al. 2022). Its nine LULC classes³ are globally coherent and comparable and it
provides the class probabilities which underly the classification, enabling us to adjust the
confidence levels upwards (downwards) by applying a higher (lower) probability thresh-
old.

C. Variable construction

Outcome Our dependent variable is respondents’ SWB. It is measured on a likert-type
ordinal scale from 0 to 10, where higher values indicate higher life satisfaction.⁴

Exposure First, we link the spatial data with the survey data by drawing a circular buffer
with radius A around each PSU location ?. Next, we isolate the tree cover probability band
within each location’s buffer for the d days previous to the interview as well as for the
period of the same length one year prior; we call 3 the recall length. Take each period’s
respective mean, denoting by %� the average probability before, and by %� the one after.
We also use the tree label band (the FNF map provided by DW) and compute the average
probability of tree cover in pixels labelled trees over the preceding year. This yields a
locally centred probability threshold a. We classify pixels as forest loss according to the
following simple rule:

�? =

{
1, if %�

? ≥ 0? + 2 and %�
? ≤ 0? − 2,

0, otherwise
(1)

In addition, we only consider pixels as forested in the before period if their probability
is above the threshold plus the offset and if they are 4-connected in a contiguous patch of
49 other pixels that meet the same criterion.⁵ This step prevents us from counting trees
outside forests. The last step is to reduce the gridded deforestation metric to the points
corresponding to the PSU locations. This is done by taking the area-weighted mean of
all pixels-segments that intersect with the circular buffer around each location. The result
is a locally centred indicator of PSU’s exposure to deforestation as a function of radius A,
recall length 3, and probability offset 2.

³They are water, trees, grass, flooded vegetation, crops, shrub and scrub, built, bare ground, and snow
and ice.

⁴For country-level summary statistics constructed from our baseline parameter combination (3 = 90, A =
35, 2 = 0.1), see Table A2 in the appendix.

⁵At 10m resolution, this operationalises the FAO (2000) definition of forests as covering at least five
hectares.
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Other variables In addition to the SWB score, we obtain a few control variables at the
individual, houshold and PSU levels from GWP. These include the respondents’ age, sex,
log-income, and immigration status as well as the urbanicity of the interview location .
Constructing the deforestation variable involves choosing three parameters. To induce
variation, we vary them along the following ranges.

• Radius of circular buffer: A?0C ∈ {5, 10, . . . , 45, 50 km}

• Recall length: 3?0C ∈ {90, 180, 360 days}

• Probability offset: 2?0C ∈ {0.1, 0.2, 0.3}

Taking all combinations of parameter values, we obtain 90 different sets of deforestation
values matched with the survey data at the PSU level (# = 4, 090).

Figure 4: Figure 4: Variation in the deforestation metric as a function of offset, radius and recall
length.

The 3D scatter plot in Figure 4 plots how the deforestation metric varies in the proba-
bility offset, the buffer radius, and the recall length. Offsets above 0.1 lead to over-rejection
such that hardly any deforestation is captured. The deforestation metric also seemingly
decreases with recall length while the trend from varying the radius is less clear. There
is a distinct jump in the deforestation metric between a radius of 50 km or less and larger
administrative units.
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D. Empirical strategy

Variation in deforestation metrics To formally test the implications of choosing any
given parameter combination, we estimate the following model via OLS:

;?0C = �1A?0C + �22?0C + �33?0C + $? + �C + �?0C . (2)

Here, ;?0C denotes deforestation around PSU ? in area 0 at time C. $? and �C capture year
and PSU fixed effects, and �?0C an error term, clustered at the PSU level. Thus, we estimate
how variation in the parameters changes the deforestation measures for the same PSU.

Impact on subjective well-being Next, to investigate the aggregate (local) effect of defor-
estation on subjective well-being, we estimate the following linear mixedmodel following
Liang and Zeger (1986):

H8?0C = ;?0C� + x′8?0C� + $? + �C + �?0C , (3)

where H is the SWB score, � contains the coefficients of interest, namely the impact of in-
creased deforesation on SWB, and x8?0C holds the control variables described above. Stan-
dard errors are clustered at the admin-1 level since our independent variable does not vary
at the PSU level (Abadie et al. 2023).

III. Results

A. Deforestation exposure

In Table 1, the first column shows the results estimated from the entire sample of PSU
locations. Columns 2-5 are estimated on subsamples along percentiles of forest cover in
the before period to control whether the initial extent of forest cover affects the impact of
parameter variation on the deforestation metric.

Across all model specifications, deforestation as a percentage of previous forest cover
decreases in recall length as well as in the probability cutoff. In fact, increasing recall
length by a single day decreases the deforestation metric by 0.01 percent and this effect is
relatively stable and highly statistically significant, regardless of initial forest cover.

As for the probability offset, increasing it by ten percentage points decreases defor-
estation by about 26 percent, but this effect is much stronger in heavily forested areas. For
observations above the 75th percentile of forest cover, the same change in c is associated
with a 62 percent decrease in deforestation while it decreases deforestation by a mere half
percent for observations below the 25th percentile.

Relative to the smallest radius (5km), a larger radius is associated with decreases in the
deforestation metric. However, this effect is insignificant in the full sample. Extracting the
deforestationmetric across the entire admin-1 or admin-2 area has a statistically significant
negative effect across all model specifications, indicating that important local variation is
being lost at these levels of spatial aggregation.
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Table 1: Regression output from Equation 2.

(1) (2) (3) (4) (5)
;(%) full sample 25th perc. 50th perc. 75th perc. 100th perc.
3 -0.01*** -0.00*** -0.00*** -0.01*** -0.01***

(0.00) (0.00) (0.00) (0.00) (0.00)
2 -26.31*** -0.48*** -11.59*** -29.11*** -61.49***

(3.36) (0.09) (1.76) (3.15) (7.16)
A = …
10 km -0.07 -0.01 0.00 -0.06 -0.25

(0.042) (0.007) (0.042) (0.084) (0.14)
15 km -0.09 -0.01 -0.02 -0.12 -0.38*

(0.07) (0.01) (0.05) (0.10) (0.17)
20 km -0.09 -0.03** -0.05 -0.12 -0.49*

(0.09) (0.01) (0.06) (0.10) (0.22)
25 km -0.09 -0.02* -0.04 -0.17 -0.56*

(0.11) (0.01) (0.06) (0.12) (0.26)
30 km -0.17 -0.03** -0.14 -0.29** -0.70*

(0.11) (0.01) (0.08) (0.10) (0.27)
35 km -0.16 -0.03** -0.13 -0.35** -0.72**

(0.14) (0.01) (0.07) (0.12) (0.26)
40 km -0.19 -0.03** -0.16* -0.43*** -0.77**

(0.15) (0.01) (0.07) (0.13) (0.26)
45 km -0.20 -0.02** -0.18** -0.48*** -0.75**

(0.15) (0.01) (0.07) (0.12) (0.25)
50 km -0.25 -0.02* -0.23** -0.48*** -0.94**

(0.16) (0.01) (0.07) (0.12) (0.30)
adm1 -0.83*** -0.04** -0.39*** -0.86*** -1.40***

(0.11) (0.01) (0.10) (0.19) (0.26)
adm2 -0.42*** -0.02* -0.15* -0.23* -0.88**

(0.07) (0.01) (0.07) (0.11) (0.27)
N 313,684 74,877 77,299 80,676 80,832
FEs Year-PSU Year-PSU Year-PSU Year-PSU Year-PSU

Notes: Standard errors clustered at adm2 level in parentheses. Other control variables: decimal degree distance to boarder, month of
interview, probability midpoint a. ∗? < 0.05, ∗∗? < 0.01, ∗∗∗? < 0.001.
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Table 2: Regression output from Equation 3.

(1) (2) (3) (4) (5)
SWB full sample 25th perc. 50th perc. 75th perc. 100th perc.
;(%) 0.00 0.00 -0.01* -0.00 -0.01*

(0.00) (0.00) (0.00) (0.00) (0.00)
Sex (1 = F) 0.02 0.02 0.05 0.05 0.05

(0.03) (0.03) (0.03) (0.03) (0.03)
Age -0.06*** -0.06*** -0.06*** -0.06*** -0.06***

(0.01) (0.01) (0.01) (0.01) (0.01)
Native 0.34** 0.34** 0.36** 0.36** 0.34**

(0.13) (0.13) (0.13) (0.13) (0.13)
Suburb 0.14** 0.16** 0.15** 0.15** 0.17***

(0.05) (0.05) (0.05) (0.05) (0.05)
Small town 0.26*** 0.24*** 0.26*** 0.29*** 0.29***

(0.07) (0.07) (0.07) (0.07) (0.08)
Big city 0.23** 0.21** 0.30*** 0.31*** 0.30***

(0.07) (0.07) (0.07) (0.07) (0.08)
N 30,132 30,132 30,132 30,132 30,132
Year FE no yes yes yes yes
Country FE no no yes no no
Adm1 FE no no no no yes
Country-Year FE no no no yes no

Notes: Standard errors clustered at admin1-year level in parentheses. Includes also month of interview FE and PSU random effects.
∗? < 0.05, ∗∗? < 0.01, ∗∗∗? < 0.001.

B. Impact on statistical inference

We start by showing OLS estimates of Equation 3 for 2 = 0.1, 3 = 90, and A = 35:< in
Table 2. Depending on the fixed effects included, the model estimates that deforestation
has either very little or no effect on SWB; atmost -0.0017 points at the samplemean of forest
loss. The effects of sex are insignificant across the board, while people report to be worse
off with age, and better off if they are native to the country they live in, or if they live in an
urban rather than rural setting. Again, we estimate the model for subsamples along the
quartiles of SWB to test for heterogenous treatment effects. An additional percent of forest
loss decreases subjectivewell-being by 0.017 points in peoplewithin the second quartile of
SWB and by 0.008 in respondents within the fourth quartile. The same qualitative results
persist when using absolute forest loss.

Finally, we rerun the model for all 90 parameter combinations of A?C , 3?C , and 2?C . Since
the estimated coefficients are too numerous to be presented in tabular form, we plot them
in Figure 5. 14 of the 90 estimates are statistically significant and negative. Seven of them
occur with offset c = 0.1, four with c = 0.2, and three with c = 0.3. Ten of the statistically
significant coefficients come from the models with 90 days recall, while 180 and 360 days
yield three and one significant estimate, respectively. The non-zero effects we find are rel-
atively equally distributed across radii. There is, nonetheless, ample evidence that chang-
ing the parameters underlying the deforestation metric’s construction affects the outcome
of statistical inference.
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Figure 5: Estimates of the SWB response to a 1 percent increase in forest loss from 90 different
model specifications.

C. Robustness

SWB is ordinal rather than continuous; a detail which we have not explicitly modelled
thus far to keep with the literature (Praag and Ferrer-i-Carbonell 2008; Ferrer-i-Carbonell
and Frijters 2004). However, to ensure that this potential misspecification (using an LLM
for inference on a non-Gaussian response variable) does not alter our results (Schröder
and Yitzhaki 2017), we re-estimate the baseline specification in a generalised linear mixed
model (GLMM) with a probit link-function and random effects.⁶ Moreover, we estimate
the model separately for each of the eleven countries in our sample to test for heterogene-
ity between them. Neither of these robustness tests alters the qualitative results presented
above. At baseline, we variably find small significant effects and null effects (output avail-
able upon request).

IV. Conclusion

This paper emulated a typical empirical setting from environmental economics by com-
bining geocoded tabular survey data with point-reductions of gridded landcover maps.
Wheremost studies tend to use landcovermaps directly “off the shelf”, we show that deci-
sions underlying the construction of such categorical landcover data matter. Our analysis

⁶We do not include fixed effects to avoid the incidental parameter problem which arises in non-linear
panel data models (e.g., Greene 2012).
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demonstrates how choices about the spatial and temporal extent of reduction (in our case
the radius r and recall d) and about precision (the probability threshold c) can meaning-
fully change the resulting spatial data points, and then carry over into statistical inference
whenever point-reduced variables are used as covariates in statistical analysis.

The 90 combinations of our key parameters yield a range of estimates that differ in
terms of their sign and significance, with the probability offset inducing the largest changes
in inference. Overall there is, at best, weak evidence of small negative changes in SWB as
a result of deforestation

The choice of probability offset can be avoided, in some applications, by using time
series methods for break detection in the tree cover probability rather than the simple dif-
ferencing approach used here.⁷ The choices related to point reduction cannot be avoided
as easily, however, if the goal is to link spatial data with tabular data through point coor-
dinates.

Choosing the circular buffer radius or some other user-definition of an area of interest
around a survey location should, where possible, be informed by existing evidence on the
effect decay distance of the phenomenon in question. Similarly, effect persistence through
time (i.e. the temporal equivalent to spatial effect decay distance) should inform the choice
of recall length. For example, it has been shown that subjectivewell-being tends to revert to
its long-term average rather quickly following temperature shocks (see, e.g., Dietrich and
Nichols 2023). This may explain why we find less significant effects when using longer
recalls.

Whenever they are available, model probabilities should be used in lieux of binary la-
bels to either determine change statistics through break detection or, barring that, control
whether results are robust to a change in the probability threshold plus any offset thereon.
As our paper demonstrates, empirical relationships can be highly sensitive to alterations
of these parameters, and thus researchers and policymakers should conduct these robust-
ness checks thoroughly before drawing any policy-relevant conclusions.
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Appendix

Table A1: Variables affected by forest ecosystems.

Demostrated Relationship Supporting Studies

Air quality Landrigan et al. (2018), Nowak and Van den Bosch (2019),
Rahman, White, and Ma (2024), and Reddington et al.
(2015)

Water quality and access to clean
drinking water

Ellison et al. (2017), Herrera et al. (2017), Mapulanga and
Naito (2019), and Zhang and Wei (2021)

Exposure to infectious disease Estifanos et al. (2024), Faust et al. (2018), Garg (2019), and
Morand and Lajaunie (2021)

Local temperature regulation Alves de Oliveira et al. (2021), Ettinger et al. (2024), and
Wolff et al. (2018)

Mental health Bolton, Montag, and Gallo (2022) and Wigand et al. (2022)

Food security Bamwesigye et al. (2019)

Vulnerability to poverty Agrawal et al. (2018), Cheng et al. (2019), Jagger et al.
(2022), and Miller et al. (2021)

Land slides Depicker et al. (2021), Li, Jenkins, and Xu (2022), and
Pacheco Quevedo et al. (2023)

Floods Blöschl (2022), Halder et al. (2023), and Ramadhan, Dina,
and Nurjani (2023)

Droughts Bochow and Boers (2023), Duku andHein (2021), C. Smith,
Baker, and Spracklen (2023), and Staal et al. (2020)

Increase in green house gases Bastin et al. (2019), Gauci et al. (2024), Nabuurs et al. (2022),
Pathak et al. (2022), and S. Smith et al. (2024)
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Table A2: Baseline summary statistics (3 = 90, A = 35, 2 = 0.1) by country.

Forest cover (before) SWB ; (%) ; (km2)
Non-missing obs. 31,246 36,245 31,246 31,246
All countries, N = 37,0511 0.23 (0.11) 4.0 (2.7) 0.006 (0.012) 24 (45)
Burundi, N = 8801 0.26 (0.04) 3.8 (2.9) 0.007 (0.004) 28 (15)
Comoros, N = 2,0001 0.13 (0.03) 4.4 (3.0) 0.000 (0.000) 0 (0)
Ethiopia, N = 5,0621 0.14 (0.10) 4.2 (2.1) 0.002 (0.005) 6 (20)
Kenya, N = 3,7771 0.20 (0.09) 4.6 (2.7) 0.012 (0.016) 47 (60)
Madagascar, N = 3,0001 0.30 (0.12) 4.2 (2.3) 0.008 (0.012) 32 (46)
Malawi, N = 3,9281 0.22 (0.07) 3.6 (3.0) 0.003 (0.003) 11 (13)
Mozambique, N = 2,9281 0.31 (0.13) 4.9 (3.3) 0.007 (0.013) 26 (50)
Rwanda, N = 3,9821 0.20 (0.07) 3.3 (2.2) 0.003 (0.003) 12 (13)
Tanzania, N = 3,9361 0.22 (0.13) 3.4 (2.7) 0.006 (0.015) 22 (59)
Uganda, N = 3,6161 0.27 (0.09) 4.5 (3.0) 0.014 (0.017) 52 (64)
Zimbabwe, N = 3,9421 0.31 (0.07) 3.4 (2.6) 0.008 (0.010) 32 (40)
p-value <0.001 <0.001 <0.001 <0.001

Notes: Mean values with standard-deviations in parantheses. P-values from Kruskal-Wallis nonparametric rank sum statistic; null-
hypothesis is that variables are identically distributed across countries.
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